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In time-domain measurements of a Poisson two-level system, the observed transition rates are
always smaller than those of the actual system, a general consequence of finite measurement band-
width in an experiment. This underestimation of the rates is significant even when the measurement
and detection apparatus is ten times faster than the process under study. We derive here a quan-
titative form for this correction using a straightforward state-transition model that includes the
detection apparatus, and provide a method for determining a system’s actual transition rates from
bandwidth-limited measurements. We support our results with computer simulations and exper-
imental data from time-domain measurements of quasiparticle tunneling in a single-Cooper-pair
transistor.

PACS numbers: 02.50.Ga, 85.35.Gv, 72.70.+m, 85.25.Cp

We consider here a physical system switching inco-
herently between the states A and B in an alternating
Poisson process, with characteristic rates ΓA = τ−1

A and
ΓB = τ−1

B , where τA and τB are the lifetimes of the re-
spective states [Fig. 1(a)]. This two-state model has been
used in the analysis of a wide variety of problems aris-
ing in medicine [1], reliability theory [2], network traffic
[3], cell physiology [4, 5], materials science [6, 7], and
condensed matter physics [8–10], especially in relation to
1/f noise [11]. Time-domain measurements of such sys-
tems produce random ‘telegraph signals’ that represent
the underlying transitions in the system convolved with
the response of the measurement apparatus [Fig. 1(b)].
The transition rates between the states ΓA and ΓB of-
ten contain information about the underlying physical
mechanism [7–10], and one of the goals of the experi-
ment is to extract these rates from the data. To do so,
one employs a detection algorithm that operates on the
measured telegraph signal [8, 12–14] and, by means of a
statistical test, determines the dwell times in each of the
states between transitions, Fig. 1(c). The dwell times
are then histogrammed to give the lifetime distribution
in the two states, from which the transition rates may be
determined.

A comparison of Figs. 1(a) and (c) reveals that what
is observed in an experiment, i.e., the state of the de-
tector, does not always reflect the true state of the sys-
tem. Particularly, the bandwidth of the measurement
limits the visibility of the underlying process on short
time scales. In this Letter we show that the response
of the measurement chain modifies the statistics of the
observed process, and that the experimentally obtained
transition rates always underestimate those in the under-
lying system. We argue that this is a general feature in
finite-bandwidth time-domain measurements of stochas-
tic two-state systems, which introduces systematic errors
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FIG. 1: Simulated data shown at different stages of the mea-
surement process: (a) The true state of the system, (b) the
observed telegraph signal, and (c) the detected state sequence.

in estimating the actual transition rates from the data.
Using a straightforward model, we calculate the lifetime
distribution in the observed process, relate the experi-
mentally observed transition rates to those in the under-
lying process, and compare the results of our analysis
with both experimental and simulated data.

In the following we assume that the overall response of
the measurement chain and the detection algorithm may
be characterized by an effective detection rate, Γdet =
1/τdet, where τdet is the mean time taken by the detector
to register a transition in the measured observable after
a transition in the underlying system has occurred [15].
It depends on the physical bandwidth of the signal, the
details of the detection algorithm, and the signal-to-noise
ratio of the measurement. The statistical nature of a
detector operating on a stochastic (and usually noisy)
signal allows us to treat the detection itself as a stochastic
process. To simplify the discussion, we will assume here
that the detection process is homogeneous, so that Γdet

is independent of time [16].

We note that the detection problem has received con-
siderable attention in the context of patch-clamp record-
ings on cellular ion channels [5, 17–19]. These authors
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FIG. 2: Schematic state diagram for the detection process.

have tended to characterize the detector with a constant
delay time, an assumption that we argue is not physical
and does not agree with our experimental results shown
below. Their probabilistic approach to the problem, how-
ever, allows for generalizing the analysis to processes with
extended state spaces.

To understand how the finite bandwidth of the mea-
surement modifies the statistics of the observed process,
let the underlying process be Poissonian, so that tA (tB),
the dwell time in the state A (B), is an exponentially
distributed random variable with mean τA (τB). In a
particular sequence, A → B → A, the excursion into B
might not be registered by the detector if tB < τdet. Two
consequences follow: 1) the lifetime distribution will have
a short-time cutoff near τdet; and, more seriously, 2) the
two neighboring occurrences of A, which were originally
distinct, will be effectively ‘stitched’ together to register a
single event, longer in duration. Therefore, the observed

distribution of tA will be artificially reweighted towards
longer times, with significant consequences for inferring
the system parameters from the data. We will calculate
this new distribution from the dynamics of the detection
process, using the model shown in Fig. 2.

In our model we separate the occurences of the states
A and B into two manifolds, which we condition upon
the state of the detector – either A∗ or B∗, according
to the state into which the last detected transition has
occurred. Suppose that the detector has just entered A∗.
We are thus on the left hand side of Fig. 2 in the state A.
The system may then switch into state B, from which a
transition into the B∗ manifold (detection) will occur at a
rate Γdet. While waiting to be detected, the system may
cycle several times between A and B until a transition is
eventually registered. Once in B∗ the cycle starts again
until we return to A∗, and so on.

The observed process is thus A∗ ⇀↽ B∗. To find the
distribution of times in A∗ before a transition is detected
(A∗ → B∗), we write the rate equations that describe
the evolution of the system in the left hand side of Fig. 2
(the dwell-time distribution in B∗ may be found by in-
terchanging A and B in the following),

A∗

{

ṖA = −ΓAPA + ΓBPB,

ṖB = −(ΓB + Γdet)PB + ΓAPA.
(1)

The experimentally accessible quantity, the dwell-time
histogram, is the probability density of leaving A∗ in
the interval [t, t + dt], which is proportional to h(t) =
ΓdetPB(t). Solving Eq. (1) with the initial conditions
PA(0) = 1 and PB(0) = 0 we obtain

h(t) =
2

θ
ΓAΓdet e−

1

2
λt sinh(θt/2), (2)

where λ = ΓA + ΓB + Γdet, and θ =
√

λ2 − 4ΓAΓdet. A
similar expression has been obtained in Ref. [19].

Eq. (2) is our main result, and has several important
implications: 1) the experimentally observed process is
no longer Poissonian. This should be kept in mind, for
example, when the correlations [20] or the full counting
statistics [21] of the observed process are analyzed. In the
short time limit, where h(t) approaches zero, the ability
to observe the state B is bottlenecked by Γdet. In the
long time limit, however, Eq. (2) tends to an exponential
distribution. 2) The mean dwell time in A∗ is 〈tA∗〉 =
∫

t h(t)dt = λ/ΓAΓdet, while the rate parameter of the
long-time exponential tail of h(t), which we call ΓA∗ , is
given by

ΓA∗ =
λ

2

(

1 −
√

1 − 4ΓAΓdet/λ2

)

. (3)

3) Researchers have traditionally interpreted both exper-
imentally derived quantities, the lifetime τA∗ = 1/ΓA∗

and the mean dwell time 〈tA∗〉 (which are not equal),
as the Poisson lifetime τA, but neither quantity is an
accurate estimate of the true lifetime of the state A.
For example, even when the measurement bandwidth
is an order of magnitude greater than the process, say
τA = τB = 10 τdet, we see that τA∗ and 〈tA∗〉 overes-
timate τA by 10 % and 20 % respectively. In the limit
τdet/τA → 0, the fractional correction to the lifetime
vanishes as τdet/τA. 4) Lastly, if (but only if) the de-
tection rates are equal for both states, then Eq. (2)
also implies that the equilibrium occupation probabili-
ties in the observed and underlying processes are equal,
p̄A∗ = 〈tA∗〉/ (〈tA∗〉 + 〈tB∗〉) = p̄A. This somewhat sur-
prising result also follows from the steady-state solution
of the master equation corresponding to Fig. 2.

We apply the results of the above analysis, mainly
Eq. (3), to an experiment [22] in which we measured
the dynamics of quasiparticle (QP) tunneling in a single-
Cooper-pair transistor (SCPT) [23–25]. The tunneling
of quasiparticles onto and off of the island of an SCPT
is expected to follow a Poisson process, taking place on
microsecond time scales. The transistor was operated
in a regime where the island can trap a single QP [25],
so that ΓA and ΓB correspond respectively to the QP
emission (un-trapping) and capture (trapping) rates. To
observe this process, we used an rf reflectometry tech-
nique [26] with the transistor held at zero dc bias [27].
The reflected rf signal, whose magnitude indicates the
presence or absence of a QP on the island, was measured
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FIG. 3: (a) Histograms of QP dwell times on the island
of the SCPT. The three curves correspond to different IF
bandwidths– 0.3, 1, and 3 MHz, and are offset for clarity. (b)
Measured lifetimes vs. effective detection time for state A (QP
present, main panel), and state B (QP absent, inset). Squares
and triangle represent analysis using the Schmitt-trigger and
Page-Hinkley algorithms, respectively. The solid lines were
calculated using Eq. (3), and its equivalent for ΓB∗ , with
τA = 26 µs, τB = 3 µs, and circles show the results of our
simulations (see text).

with a spectrum analyzer. The video output of the ana-
lyzer was digitized at 500 ns intervals and recorded by a
computer, where a typical record followed the evolution
of the system over a span of one second.

For this analysis, we recorded a series of time traces
that differed only in the bandwidth of the intermediate-
frequency (IF) filters of the spectrum analyzer. Each of
these time traces was analyzed by use of both a simple
hysteretic (‘Schmitt trigger’) detector algorithm [13], and
a Page-Hinkley cumulative likelihood ratio algorithm [8,
12]. In both cases we set the detection thresholds so
that the detector’s false-alarm rate was negligible, at the
expense of compromising the detection efficiency.

In Figure 3(a) we show histograms of QP dwell-times
on the island of the SCPT. The histograms were ob-
tained using the Schmitt-trigger algorithm to process
time traces measured with IF bandwidths of 300 kHz,
1 MHz, and 3 MHz. It is clear from the slopes of the
measured distributions (on a log scale in the figure) that
the observed QP tunneling rate depends on the measure-
ment bandwidth. It appears greater when measured at
a higher bandwidth, in accordance with our understand-
ing of the detection process. Also note the sharp drop in
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FIG. 4: Observed lifetimes τA∗ from a simulated process with
τA = 25 µs and τB = 1 to 25 µs. The signals were filtered
with fc = 1MHz and processed with the Schmitt-trigger al-
gorithm. From a fit (solid line) we find τdet = 1.8 µs. Because
τdet represents the overall response of both the filter and the
algorithm, it is not surprising to find τdet > 1/fc.

the number of registered counts at short times, reflect-
ing the detection bottleneck evident from Eq. (2). This
short-time behavior of the dwell-time distribution might
be overlooked if the data are binned too coarsely.

We obtain the QP tunneling rates, as measured with
each bandwidth–algorithm combination, by fitting the
lifetime distributions to an exponential. The experimen-
tal values of the lifetimes τA∗ = 1/ΓA∗ (QP on the island)
and τB∗ = 1/ΓB∗ (QP off the island) are shown respec-
tively in the main panel of Fig. 3(b) and in the inset,
plotted versus the effective detection time of the corre-
sponding measurement. To estimate the detection time
τdet directly from the data, we chose to use the time
at which the lifetime distribution peaks. This is only
an approximation, giving an uncertainty in τdet of about
±1 µs.

The true lifetimes are estimated by extrapolating the
measured lifetimes in Fig. 3(b) to τdet = 0, and are ap-
proximately τA = 26.0 ± 0.7 µs and τB = 3.0 ± 0.5 µs.
The solid curves in the figure were calculated from Eq. (3)
and its equivalent for ΓB∗ , using the above numbers for
τA,B . We have also performed computer simulations,
whose results are shown in Fig. 3(b) as circles. We gen-
erated a series of ∼ 104 transitions between two signal
levels, whose durations were taken as random variables
from two exponential distributions with means equal to
τA,B above. We added Gaussian noise to the signal, and
applied to it a range of convolution filters with varying
bandwidths. The resulting signals were then processed
using our Schmitt-trigger algorithm, and analyzed as de-
scribed in the preceeding paragraphs. The agreement
between the simulations, experiment, and the theory, ev-
ident from the figure, indicates that our model captures
the main features of finite bandwidth time-domain mea-
surements. Characterization of the detector with a con-
stant “dead-time” as in Refs. [17, 18] would result in an
exponential dependence of the observed lifetimes on the
bandwidth of the experiment, in disagreement with our
results.

Another set of simulations is shown in Fig. 4. Here we
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programmed a waveform generator to give an analog sig-
nal that follows a simulated Poisson process. This analog
signal was used to amplitude-modulate the rf carrier in
our experimental setup. We varied τB while holding τA

fixed, and used a fixed filter. We plot in Fig. 4 the ob-
served τA∗ as circles, and the solid line is a fit to Eq. (3)
with Γdet the only free parameter. A similar procedure
may be used to determine the detection rate in a given
experiment.

Since only the observed process is accessible in an ex-
periment, we proceed to find a transformation that ex-
presses the true rates of the system in terms of the ob-
served ones by inverting Eq. (3) and the correspond-
ing equation for ΓB∗ . The inverse transformation be-
low is given in terms of the dimensionless quantities u =
ΓA/Γdet, v = ΓB/Γdet, u∗ = ΓA∗/Γdet, v∗ = ΓB∗/Γdet,
and is easily generalized to the case of asymmetric detec-
tion rates,

u =

(

1 − u∗2 − v∗2

1 − u∗ − v∗

)

u∗ − u∗2

v =

(

1 − u∗2 − v∗2

1 − u∗ − v∗

)

v∗ − v∗2. (4)

By use of Eq. (4) it is straightforward to analyze the
propagation of uncertainties from the measured lifetimes
to the true-lifetime estimates. The lifetimes in the un-
derlying system can alternatively be extracted from the
moments of the dwell-time histograms, Eq. (2) : τA =
τ−1

det
(〈tA∗〉2 − 1

2
〈t2A∗〉), with a similar equation for τB .

Although the example analyzed in this Letter is from
the realm of condensed matter physics, we stress that
our approach to the detection problem is applicable also
in other contexts. There are a number of examples in
the literature for the treatment of imperfect detectability
of an underlying Markov process in medical studies [28],
and of Markov processes that are only partially observed,
e.g., in reliability theory and criminology [29]. These
authors, however, considered the detection problem as
static and independent, by assigning the detector a fixed
fidelity. Accounting for the dynamics of the detection
process, as we have done here to address the effects of
a detector’s finite response time, may help identify and
correct systematic errors arising in studies in those fields.
A more accurate description of the detection process has
been developed in the field of cellular physiology [17–19],
however, our results suggest that our stochastic model
of the detector is more realistic than the “constant dead
time” model commonly used in that context.

To conclude, we have shown that when a two-state al-
ternating Poissonian system is measured in the time do-
main, the statistics of the experimentally observed pro-
cess depend on the response time of the detector. Partic-
ularly, the observed process is no longer Poisson, and the
transition rates that one obtains from the data always
underestimate those in the underlying process. We have

given analytic expressions for the relation between the ex-
perimentally observed rates and their actual values, and
shown that our results are in good agreement with both
experimental and simulated data. We argue that not ac-
counting for the effects of finite measurement bandwidth
will lead to results that are inaccurate at best, even when
the bandwidth of the experiment is an order of magni-
tude greater than the underlying process. On the other
hand, measurements of fast processes approaching a well
characterized bandwidth limit of an experiment can still
give meaningful results using the analysis presented here.

We thank R. L. Kautz, S. Nam, and J. A. Stroscio for
valuable discussions.

† Electronic address: naaman@boulder.nist.gov

[1] P. S. Albert and M. A. Waclawiw, Statist. Med. 17, 1481
(1998).

[2] B. V. Gnedenko and I. N. Kovalenko, Introduction to

Queueing Theory (Israel Program for Scientific Transla-
tion, Jerusalem, 1968).

[3] A. Adas, IEEE Commun. Mag. 35, 82 (1997).
[4] J. J. Singer and J. V. Walsh, Pflug. Arch. Eur. J. Phy.

408, 98 (1987).
[5] E. Neher, J. Physiol. 339, 663 (1983).
[6] K. A. Ralls and R. A. Buhrman, Phys. Rev. Lett. 60,

2434 (1988).
[7] J. A. Stroscio and R. J. Celotta, Science 306, 242 (2004).
[8] W. Lu, J. Zhongqing, L. Pfeiffer, K. W. West, and A. J.

Rimberg, Nature (London) 423, 422 (2003).
[9] R. Schleser, E. Ruh, T. Ihn, K. Ensslin, D. C. Driscoll,

and A. C. Gossard, Appl. Phys. Lett. 85, 2005 (2004).
[10] T. M. Buehler, D. J. Reilly, R. P. Starrett, V. C. Chan,

A. R. Hamilton, A. S. Dzurak, and R. G. Clark, J. Appl.
Phys. 96, 6827 (2004).

[11] S. Machlup, J. Appl. Phys. 25, 341 (1954).
[12] D. V. Hinkley, Biometrika 58, 509 (1971).
[13] Y. Yuzhelevski, M. Yuzhelevski, and G. Jung, Rev. Sci.

Instrum. 71, 1681 (2000).
[14] R. N. McDonough and A. D. Whalen, Detection of Sig-

nals in Noise (Academic Press, San Diego, 1995), 2nd
ed.

[15] For simplicity, we neglect the detector false-alarm rate.
[16] We assume Γdet is equal for transitions in both directions.

Generalizing our results for asymmetric detection rates is
straightforward.

[17] A. G. Hawkes, A. Jalali, and D. Colquhoun, Phil. Trans.
R. Soc. Lond. A 332, 511 (1990).

[18] F. Ball and M. Sansom, Adv. Appl. Prob. 20, 546 (1988).
[19] F. Ball, Adv. Appl. Prob. 22, 802 (1990).
[20] E. A. Korobkova, T. Emonet, H. Park, and P. Cluzel,

Phys. Rev. Lett. 96, 058105 (2006).
[21] S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser,
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